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Abstract

In this paper we study the question under which conditions a linear multi-modal system is disturbance
decoupled. We establish necessary and sufficient geometric conditions from which the existing results on
switched linear systems and conewise linear systems can be recovered as special cases. Also, we apply these
conditions to a class of linear complementarity systems in order to obtain a more crisp characterization.
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1. Introduction

Annihilating or reducing the effects of distur-
bances is of major importance virtually in every
real-life control problem. Designing feedback laws
that decouple the disturbances from a certain to-5

be-controlled output constitute the well-known dis-
turbance decoupling problem. The study of this
problem for linear systems led to the development
of geometric control theory [2, 3, 38] which pro-
vided solutions to numerous control problems as10

well as a deep understanding of the dynamics of
linear systems [37, 4, 29] and (smooth) nonlinear
systems [23, 22].

Geometric approach to linear systems is among
many fields on which Jan Willems made a major15

impact. Examples are his seminal work on almost
invariant subspaces [33, 34], (almost) disturbance
decoupling [35, 32], and application of geometric
ideas to singular optimal control problems [36].

In this paper, we focus on a class of hybrid dy-20

namical systems and provide necessary and suf-
ficient geometric conditions under which the dis-
turbances are decoupled from pre-specified to-be-
controlled outputs. Within the hybrid systems,
the results on disturbance decoupling problem are25

limited to jumping hybrid systems [12], continu-
ous piecewise affine systems [14], a class of linear
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complementarity systems [16], and switched linear
systems [11, 24, 25, 26, 39, 40]. The results pre-
sented in these papers very much resemble those30

for the linear systems although their derivation is
much harder, in particular, in the presence of state-
dependent switching [14, 16].

Within this paper, we first lay a general frame-
work that contains a particular class of switched lin-35

ear systems, linear complementarity systems, and
the so-called conewise linear systems (as well as
combinations of these) as particular cases. Later,
we investigate necessary and sufficient conditions
for disturbances to be decoupled within this gen-40

eral framework. In addition, we show that all the
existing results for the hybrid systems mentioned
above can be recovered from the presented results
as special cases.

Furthermore, we study a class of linear comple-45

mentarity systems in detail in order to find novel
necessary and sufficient conditions for this kind of
systems to be disturbance decoupled.

The organization of the paper is as follows. We
start with some preliminaries and notation in Sec-50

tion 2. We introduce general linear multi-modal
systems in Section 3 and discuss a few special cases.
In Section 4 we give the definition of the property
of being disturbance decoupled for a linear multi-
modal system, and present our main results. In55

Theorem 8 we give a necessary condition and in
Theorem 9 a sufficient condition for a linear multi-
modal system to be disturbance decoupled. In
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Corollary 11 we show that in some cases the neces-
sary condition and the sufficient condition coincide.60

We apply these results in Section 5 to the special
cases that we introduced in Section 3. For one type
of linear complementarity systems, this will lead
to novel results, stated in Theorem 14. The pa-
per closes with the conclusions and discussions of65

possible future work in Section 6.

2. Preliminaries and notation

For a vector v we write nv as its dimension. For
two vectors v and w, we let col(v, w) denote the
column vector that is obtained by stacking v and
w. A cone is a subset of a vector space that is
closed under multiplication by positive scalars. The
relative interior of a set S ⊆ Rn is defined as

rint(S) := {x ∈ S : ∃ε > 0, Nε(x) ∩ aff(S) ⊆ S},

where Nε(x) is an ε-neighborhood of x and aff(S)
is the affine hull of S.

Consider the linear system Σ = Σ(A,B,C,D)
given by

ẋ(t) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) +Du(t) (1b)

where the input u, state x, and output y have di-70

mensions nu, nx and ny respectively. In what fol-
lows, we quickly introduce some of the fundamental
notions of geometric control theory of linear sys-
tems for the sake of completeness. We refer to [16]
for more details.75

The controllable subspace of Σ is the smallest A-
invariant subspace containing imB. We will denote
it by

〈A | imB〉 := imB +A imB + . . .+Anx−1 imB.
(2)

A subspace T ⊆ Rn is called an input containing
conditioned invariant subspace of Σ if[

A B
] (

(T × Rnu) ∩ ker
[
C D

])
⊆ T .

It is well-known that a subspace T is an input con-
taining conditioned invariant subspace if and only
if there exists a matrix L ∈ Rn×p such that

(A+ LC)T ⊆ T and im (B + LD) ⊆ T . (3)

The strongly reachable subspace of Σ is the small-
est (with respect to the subspace inclusion) input

containing conditioned invariant subspace and will
be denoted by T ∗(Σ).

It follows from (3) with the choice of L = 0
that the controllable subspace is an input contain-
ing conditioned invariant subspace. Hence, we have

T ∗(Σ) ⊆ 〈A | im B〉. (4)

Let K and L be m × n and n × p matrices,
respectively. Also let ΣK,L denote the system
Σ(A + BK + LC + LDK,B + LD,C + DK,D).
It can easily be verified that

T ∗(ΣK,L) = T ∗(Σ). (5)

A subspace V ⊆ Rn is called an output nulling
controlled invariant subspace of Σ if[

A
C

]
V ⊆

(
V × {0}

)
+ im

[
B
D

]
.

The weakly unobservable subspace of Σ is the80

largest (with respect to the subspace inclusion) out-
put nulling controlled invariant subspace and will
be denoted by V∗(Σ).

It is well-known that the transfer matrix D +
C(sI−A)−1B is right invertible as a rational matrix
if and only if

V∗(Σ) + T ∗(Σ) = Rnx and rank
[
C D

]
= ny.

Straightforward linear algebra arguments show that
these conditions are equivalent to

im D + CT ∗(Σ) = Rny . (6)

3. Linear multi-modal systems

In this paper we consider linear multi-modal sys-
tems given by the differential inclusion

ẋ(t) ∈ Ax(t) + Ed(t) + Φ(y(t)) (7a)

y(t) = Cx(t) + Fd(t) (7b)

z(t) = Jx(t) (7c)

where x is the state, d is the disturbance, y is the
selection output, z is the to-be-controlled output,
A, C, E, F and J are matrices of appropriate sizes
and Φ : Rny → Rnx is a set-valued map satisfying

Φ(y) = {Miy | i ∈ I, y ∈ Yi},

where I is a finite index set, {Yi}i∈I is a collec-85

tion of cones in Rny , and {Mi}i∈I is a collection
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of nx × ny matrices. The cones Yi are not neces-
sarily solid (i.e., ny-dimensional). Moreover, the
cones may overlap and their union does not have to
be equal to Rny . Without loss of generality we can90

assume that the matrix
[
C F

]
has full row rank.

Let T > 0. For a given initial state x0 and an in-
tegrable disturbance d we call an absolutely contin-
uous function x : [0, T ) → Rnx a solution on [0, T )
of system (7) if (7a) holds for almost all t ∈ [0, T )95

and x(0) = x0. If T = +∞, we simply say that x is
a (complete) solution of (7). In the sequel, we will
allow multiple solutions for a given initial state and
disturbance but make two assumptions regarding
the existence of solutions.100

The first assumption we make is that local solu-
tions can be extended to complete solutions.

Assumption 1 If the system (7) admits a local
solution xT on [0, T ) for some T > 0, initial state
x0, and disturbance d, then there exists a complete105

solution x for the same initial state x0 and distur-
bance satisfying x(t) = xT (t) for all t ∈ [0, T ).

The second assumption regarding the existence
of solutions requires that the disturbances are not
restricted by the dynamics of the system.110

Assumption 2 If the system (7) admits a com-
plete solution for some initial state and disturbance,
then there exists a complete solution for the same
initial state and for any disturbance.

Later on, we will elaborate on these assumptions115

when we discuss specific classes of systems that fall
into the framework of (7).

We say that an initial state is feasible if for all
locally integrable disturbances d there exists a com-
plete solution of (7). The set of all feasible states120

will be denoted by X0.
To simplify the notation, we define

Ai = A+MiC, Ei = E +MiF (8)

and rewrite system (7) as

ẋ(t) ∈ {Aix(t) + Eid(t) | y(t) ∈ Yi} (9a)

y(t) = Cx(t) + Fd(t) (9b)

z(t) = Jx(t) (9c)

We will work mainly with this form of the linear
multi-modal system in the rest of the paper.

Examples of systems that fall into this frame-
work include switched linear systems, conewise lin-125

ear systems, and linear complementarity problems,
which we discuss next.

Example 3 (Switched Linear Systems) We
consider the following particular class of linear
switched systems

ẋ(t) = Aσ(t)x(t) + Eσ(t)d(t) (10a)

z(t) = Jx(t), (10b)

where σ is a switching signal from R>0 to a finite
index set I. By taking A = Aj and E = Ej for
some j ∈ I, we can rewrite (10) in the form of a
multi-modal system as

ẋ(t) ∈ Ax(t) + Ed(t) + Φ(y) (11a)

y(t) = col(x(t), d(t)), (11b)

z(t) = Jx(t), (11c)

where

Φ(y) = {
[
Ai −A Ei − E

]
y | i ∈ I, y ∈ Yi}

and Yi = Rnx for all i. Note that Assumptions 1
and 2 naturally hold for switched linear systems and
X0 = Rnx .130

Example 4 (Conewise Linear Systems) A
continuous function Φ : Rny → Rnx is said to be
conewise linear if there exist a finite family of solid
polyhedral cones {Yi}i∈I with ∪i∈IYi = Rny and
nx × ny matrices {Mi}i∈I such that g(y) = Miy135

for y ∈ Yi.
Consider systems of the form

ẋ(t) = Ax(t) + Ed(t) + Φ(y(t)) (12a)

y(t) = Cx(t) + Fd(t) (12b)

z(t) = Jx(t) (12c)

where Φ : Rny → Rnx is a continuous conewise lin-
ear function. These systems will be called conewise
linear systems (CLS) and were studied in [10, 1, 8].
Naturally, CLSs fall into the framework of (7). As140

the union of the (solid) cones Yi is the entire Rny ,
Assumptions 1 and 2 are satisfied and X0 = Rnx .

Example 5 (Complementarity Systems) We
consider the linear complementarity system (LCS)

ẋ(t) = Ax(t) + Ed(t) +Gζ(t) (13a)

η(t) = Nx(t) +Rd(t) +Hζ(t) (13b)

0 6 ζ(t) ⊥ η(t) > 0 (13c)

z(t) = Jx(t), (13d)
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where ζ, η ∈ Rnη are the so-called complementarity
variables and all involved matrices are of appropri-
ate dimensions.145

Here, the inequalities for vectors are component-
wise inequalities and ⊥ denotes orthogonality. Lin-
ear complementarity systems are encountered in ap-
plications from various areas of engineering as well
as operations research [30, 18, 28, 31]. For the work150

on the analysis and control of linear complementar-
ity systems, we refer to [19, 20, 7, 6, 5, 17, 21, 9].

In this paper, we focus on two particular classes
of linear complementarity systems that were heavily
studied in the literature:155

1. H is a P -matrix, that is a matrix whose prin-
cipal minors are all positive (see e.g. [13]).

2. R = 0, H = 0, and NG is a symmetric positive
definite matrix.

In what follows we will briefly derive the corre-160

sponding linear multi-modal systems for these two
cases by skipping technical details for which we re-
fer to [19] for the first case and [9] for the second.

In the case that H is a P -matrix, the LCS (13)
boils down to the multi-modal system

ẋ(t) ∈ {Aαx(t) + Eαd(t) | α ∈ I, y(t) ∈ Yα} (14a)

y(t) = Cx(t) + Fd(t) (14b)

z(t) = Jx(t) (14c)

where I is the set of all subsets of {1, 2, . . . , nη},
and

C = N

F = R

Aα = A−G•α
(
Hαα

)−1
Nα•

Eα = E −G•α
(
Hαα

)−1
Nα•

Yα = {y ∈ Rnη |
[

−(Hαα)−1Iα•
Iαc• −Hαcα(Hαα)−1Iα•

]
y > 0}.

Note that in the above on the left-hand side the
subscript α is used as an index, whereas on the165

right-hand side the subscript αβ selects rows α and
columns β of a matrix, for given index sets α and β.
Here, the • means selecting all rows or columns and
αc denotes the complement of α in {1, 2, . . . , nη}.

In the case that R = 0, H = 0, and NG is a
symmetric positive definite matrix, the LCS (13)
boils down to the multi-modal system (14) where

where α ⊆ {1, 2, . . . , nη} and

C =

[
N
NA

]
F =

[
0
NE

]
Aα = A−G•α(Nα•G•α)−1Nα•A

Eα = E −G•α(Nα•G•α)−1Nα•E

Yα = {y ∈ R2nη |
[
Iαc• 0

0 −(Nα•G•α)−1Iα•

]
y > 0,[

Iα• 0
]
y = 0}.

For both cases, Assumptions 1 and 2 are satisfied170

[19, 9]. We have X0 = Rnx (see e.g. [19]) in case
H is a P -matrix and X0 = {x0 | Cx0 > 0} for the
second case (see e.g. [9]).

4. Disturbance decoupled systems

We start with the following definition of a distur-175

bance decoupled system.

Definition 6 We say that system (9) is distur-
bance decoupled if for any given feasible initial state
x0 ∈ X0 and any two solutions (x1(t), y1(t), z1(t))
and (x2(t), y2(t), z2(t)), corresponding to any two
locally integrable disturbances d1(t) and d2(t) re-
spectively, satisfy

z1(t) = z2(t)

for all t > 0.

In this paper we investigate when system (9) is
disturbance decoupled.

Throughout the paper we assume the following.180

Assumption 7 For each i ∈ I, the subspace
imF + C〈Ai | imEi〉 and the cone Yi satisfy

i. imF + C〈Ai | imEi〉 ⊆ span(Yi),

ii.
(

imF +C〈Ai | imEi〉
)
∩ rint(Yi) 6= ∅, or Yi is

solid.185

The first assumption is trivial when each cone Yi
is solid. A consequence of this assumption is that
imF ⊆ ∩i∈I span(Yi). The second assumption as-
sures a certain ‘liveliness’ of each cone Yi; for every
cone Yi there exists a point x0 and a locally inte-190

grable disturbance d(t) such that yx0,d(t) stays in
rint(Yi) for some time t. If F + C(sI − A)−1E is
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right invertible, using (6), (5), and (4), one can see
that imF +C〈Ai | imEi〉 = Rny , which implies the
second assumption.195

A necessary condition for a linear multi-modal
system to be disturbance decoupled is stated in the
following theorem.

Theorem 8 If a linear multi-modal system of the
form (9), satisfying Assumptions 1, 2 and 7, is dis-
turbance decoupled, then∑

i∈I
〈Ai | imEi〉 ⊆ ker J. (15)

Proof. Fix i ∈ I. Since
[
C F

]
is of full row rank,

there exist an x0 ∈ Rnx and a d ∈ Rnd such that

y0 := Cx0 + Fd ∈ rint(Yi).

If the first condition in Assumption 7 holds, then
we can even pick x0 ∈ 〈Ai | imEi〉. Consider the
solution (x̃(t), ỹ(t)) of the following linear system

˙̃x(t) = Aix̃(t) + Eid(t) (16a)

ỹ(t) = Cx̃(t) + Fd(t), (16b)

where d(t) = d and with x̃(0) = x0. If Yi is solid,
then the continuity of ỹ(t) implies that there exists
an ε > 0 such that ỹ(t) ∈ rint(Yi) for all t ∈ [0, ε].
In the case that we have x0 ∈ 〈Ai | imEi〉, we see
that x̃(t) ∈ 〈Ai | imEi〉 for all t > 0. Hence, by
Assumption 7(i),

ỹ(t) ∈ imF + C〈Ai | imEi〉 ⊆ span(Yi)

for all t > 0. Since ỹ(t) is continuous, and ỹ(0) =
y0 ∈ rint(Yi), it follows that there again exists an200

ε > 0 such that ỹ(t) ∈ rint(Yi) for all t ∈ [0, ε].
Let e be any vector in Rnd , then we have

Cx0 + F (d+ µe) = y0 + Fµe ∈ span(Yi),

for any µ ∈ R, since imF ⊆ span(Yi) by Assump-
tion 7(i). By taking |µ| sufficiently small, we have
Cx0+F (d+µe) ∈ rint(Yi). Let x̃e(t) be the solution
of (16) for the constant disturbance de(t) = d+ µe205

and initial condition x̃e(0) = x0, with correspond-
ing output ỹe(t). For ỹe(t) there is an εe > 0 such
that ỹe(t) ∈ rint(Yi) for t ∈ [0, εe].

Let ε∗ = min(ε, εe). Due to Assumption 1, we
can extend x̃(t) and x̃e(t) from t = ε∗ onwards210

to obtain complete solutions x(t) and xe(t) of sys-
tem (9), with corresponding outputs (y(t), z(t)) and

(ye(t), ze(t)), respectively. Moreover, x0 ∈ X0 due
to Assumption 2.

Since system (9) is disturbance decoupled, we
have that

z(t)− ze(t) = J(x(t)− xe(t)) = 0 (17)

for all t > 0. Since d(t) and de(t) are constant,
we can differentiate (17) repeatedly and evaluate
at t = 0 to obtain

JAkiEiµe = 0

for all k > 0. Since this holds for all e ∈ Rnd , we215

have JAkiEi = 0 for all k. Consequently, by (2),
we have 〈Ai | imEi〉 ⊆ ker J . As this holds for all
i ∈ I, we can conclude that (15) holds. �

Next we give a sufficient condition for a linear
multi-modal system to be disturbance decoupled.
For this purpose, we define the subspaces

A :=
∑
i,j∈I

im(Aj −Ai), E :=
∑
i

imEi. (18)

Theorem 9 If there is a subspace V ⊆ ker J such
that AiV ⊆ V for each i ∈ I, E ⊆ V and A ⊆ V,220

then the linear multi-modal system (9) satisfying
Assumption 7 is disturbance decoupled.

Proof. Let x0 ∈ X0 be any given feasible ini-
tial state, and let nv = dimV. Furthermore,
let {ξ1, ξ2, . . . , ξnx} be a basis for Rnx such that
{ξ1, ξ2, . . . , ξnv} forms a basis for V. With respect
to these coordinates, we can write every x ∈ Rnx
uniquely as x = col(v, w) for some v ∈ Rnv and
w ∈ Rnx−nv such that col(v, 0) ∈ V. Since V is Ai-
invariant for each i ∈ I and E ⊆ V ⊆ ker J , with
respect to the new coordinates we have

Ai =

[
Ai11 Ai12
0 Ai22

]
, Ei =

[
Ei1
0

]
, J =

[
0 J2

]
,

for every i ∈ I, where Ai11 ∈ Rnv×nv , Ei1 ∈ Rnv×nd
and J2 ∈ R(nx−nv)×nx . Let x0 = col(v0, w0), and
let d(t) be any locally integrable disturbance. Write
x(t) = col(v(t), w(t)), then v(t) and w(t) satisfy

v̇(t) ∈ {Ai11v(t) +Ai12w(t) + Ei1d(t) |

for i ∈ I s.t. C

[
v(t)
w(t)

]
+ Fd(t) ∈ Yi}

ẇ(t) = Ai22w(t)

z(t) = J2w(t)
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for almost all t, with v(0) = v0 and w(0) = w0.
Since im(Aj − Ai) ⊆ V for all i, j ∈ I, we have

Ai22 = Aj22 for all i, j ∈ I. Therefore, w(t) will
satisfy the linear differential equation

ẇ(t) = Ai22w(t), w(0) = w0

for any fixed i ∈ I and almost all t. We see that
w(t) does not depend on the disturbance d(t). Since
the output z satisfies z(t) = J2w(t), we see that z225

does not depend on the disturbance either. Hence,
system (9) is disturbance decoupled. �

The subspace
∑
i∈I〈Ai | imEi〉 plays an impor-

tant role in our main results. Although each sub-
space 〈Aj | imEj〉 is invariant under Aj , their sum230 ∑
i∈I〈Ai | imEi〉 is not necessarily invariant un-

der each Aj , so it is not always possible to use∑
i∈I〈Ai | imEi〉 as the subspace V in Theorem

9. In the next lemma we give some conditions un-
der which the subspace

∑
i∈I〈Ai | imEi〉 is Ai-235

invariant for each i ∈ I and has a more compact
form.

Lemma 10 Let Ai and Ei satisfy (8). The sub-
space

∑
i∈I〈Ai | imEi〉 is Aj-invariant and satis-

fies ∑
i∈I
〈Ai | imEi〉 = 〈Aj | A+ E〉 (19)

for each j ∈ I if one of the following conditions
holds:

i. A ⊆
∑
i∈I〈Ai | imEi〉,240

ii. im(Mj −Mi) ⊆
∑
i∈I〈Ai | imEi〉 for all i, j ∈

I,

iii. (Mj−Mi)(imF+CT ∗(A,E,C, F )) = im(Mj−
Mi) for all i, j ∈ I,

iv. F + C(sI −A)−1E is right invertible.245

Proof. We will prove this lemma by showing that
iv.⇒ iii.⇒ ii.⇒ i.⇒(19). Define

V :=
∑
i∈I
〈Ai | imEi〉, T ∗ := T ∗(A,E,C, F ).

(iv.⇒ iii.) If F+C(sI−A)−1E is right invertible,
then using (6) we find that imF + CT ∗ = Rny ,
which implies the third condition.

(iii. ⇒ ii.) From (5), we see that the subspace
T ∗ satisfies T ∗ = T ∗(Ai, Ei, C, F ) for each i ∈ I.
Using (4) this gives us

T ∗ ⊆ 〈Ai | imEi〉,

for each i ∈ I, which implies

AiT ∗ ⊆ Ai〈Ai | imEi〉 ⊆ 〈Ai | imEi〉 ⊆ V.

Furthermore, we have that

imEi ⊆ 〈Ai | imEi〉 ⊆ V

for all i in I. This yields

(Mj −Mi)CT ∗ = (Aj −Ai)T ∗ ⊆ V
im(Mj −Mi)F = im(Ej − Ei) ⊆ V

for any i, j ∈ I. Together, this gives us

(Mj −Mi)(imF + CT ∗) ⊆ V.

From the third condition it follows that250

im(Mj −Mi) ⊆ V for all i, j ∈ I.

(ii. ⇒ i.) : This follows from the fact that
im(Aj −Ai) = im(Mj −Mi)C ⊆ im(Mj −Mi).

255

(i.⇒ (19)) For any i, j ∈ I we have

Aj〈Ai | imEi〉 ⊆ Ai〈Ai | imEi〉
+ (Aj −Ai)〈Ai | imEi〉

⊆ 〈Ai | imEi〉+ im(Aj −Ai)
⊆ V,

where we used A ⊆ V in the last step. Hence, we
see that

AjV = Aj(
∑
i∈I
〈Ai | imEi〉)

⊆
∑
i∈I

Aj〈Ai | imEi〉 ⊆ V,

thus V is Aj-invariant for every j ∈ I. Since
imEi ⊆ V for all i ∈ I it follows that E ⊆ V,
and hence A+ E ⊆ V. Consequently,

〈Aj | A+ E〉 ⊆ V, (20)

since 〈Aj | A+ E〉 is the smallest Aj-invariant sub-
space containing A+ E .
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For the other inclusion, note that

Ai〈Aj | A+ E〉 ⊆ Aj〈Aj | A+ E〉
+ (Ai −Aj)〈Aj | A+ E〉
⊆ 〈Aj | A+ E〉+A
⊆ 〈Aj | A+ E〉,

which means that 〈Aj | A+E〉 is Ai-invariant for all
i ∈ I. Furthermore, we have imEi ⊆ 〈Aj | A + E〉
for each i ∈ I. Since 〈Ai | imEi〉 is the smallest
Ai-invariant subspace containing imEi, we see that

〈Ai | imEi〉 ⊆ 〈Aj | A+ E〉,

for each i ∈ I, and hence V ⊆ 〈Aj | A + E〉. To-
gether with (20) this completes the proof. �

If one of the conditions in Lemma 10 is satis-260

fied, we can combine Theorems 8 and 9 to obtain
the following necessary and sufficient conditions for
system (9) to be disturbance decoupled.

Corollary 11 Assume that Assumptions 1, 2, and
7 are satisfied. If one of the conditions in Lemma 10
holds, then the linear multi-modal system (9) is dis-
turbance decoupled if and only if

〈Aj | A+ E〉 ⊆ ker J,

for every j ∈ I.

5. Special classes of systems265

In this section we revisit the examples discussed
in Section 3 and apply Theorem 8, Theorem 9, and
Corollary 11 to these systems. For the linear com-
plementarity problem with R = 0, H = 0, and
NG a symmetric positive definite matrix this will270

lead to new results, which are presented in Section
5.3.2. For the switched linear systems, conewise
linear systems and the other linear complementar-
ity problem, we compare our result with existing
results in the literature.275

5.1. Switched Linear Systems

The disturbance decoupling problem for switched
linear systems has been studied in [39], in which a
distinction is made between disturbance decoupling
(DD) w.r.t. d and DD w.r.t. the switching signal σ.
From Theorem 3.7 in [39] we see that system (10) is
disturbance decoupled (w.r.t both d and σ) if and

only if there exists a subspace V that is invariant
under all Ai, satisfying

im(Ai −Aj) ⊆ V ⊆ ker J, imEi ⊆ V,

for all i, j ∈ I.
The switched linear system satisfies Assumption

7 since every Yi equals Rny . Therefore, we can ap-
ply Theorem 9, which gives the same sufficient con-280

dition as above for system (10) to be disturbance
decoupled. However, the necessary condition we
get from Theorem 8 is slightly weaker. This dis-
crepancy can be explained by the observation that
for switched linear systems the relative interior of285

every two cones Yi and Yj intersect, which means
that for each i, j ∈ I there is a open neighborhood
in Rny in which the mode can change arbitrarily
from i to j and back.

In the case that A ⊆
∑
i∈I〈Ai | imEi〉, we have290

that
∑
i∈I〈Ai | imEi〉 is the smallest subspace that

contains imEi and is Ai-invariant for each i ∈ I,
and hence we could take

∑
i∈I〈Ai | imEi〉 as the

subspace V in Theorem 3.7 in [39].

5.2. Conewise Linear Systems295

Conewise linear systems can be seen as a special
case of piecewise affine systems. In the case that
F = 0, Corollary 3 in [14] shows that∑

i∈I
〈Ai | imE〉 ⊆ ker J (21)

is a necessary condition for the conewise linear sys-
tem (12) to be disturbance decoupled. Corollary 5
in [14] states that system (12) is disturbance decou-
pled if there is a subspace V ⊆ ker J that contains
imE and is invariant under each Ai. The necessary300

condition (21) can be recovered by Theorem 8, since
Assumption 7 is satisfied, as each cone Yi is solid.
From Theorem 9 we find that the existence of a
subspace V ⊆ ker J that is invariant under each Ai
and contains imE and A is a sufficient condition for305

system (12) to be disturbance decoupled. This con-
dition is stronger than the condition in Corollary 5
in [14]. This difference can be explained by the con-
tinuity assumption for the conewise linear system,
which cannot be exploited for general linear multi-310

modal systems. In the case that C(sI − A)−1E
is right invertible, then Corollary 9 in [14] yields
(21) as a necessary and sufficient condition for dis-
turbance decoupledness, which can be recovered by
Corollary 11 in this paper.315
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A bimodal linear system is a special case of
conewise linear systems. We consider the case that
y = cTx for some vector c. It is shown in [15] that
such a bimodal linear system is disturbance decou-
pled if and only if

〈A1 | imE〉+ 〈A2 | imE〉 ⊆ ker J,

even if cT (sI − A)−1E is not right invertible.
For this particular systems, the condition (i) of
Lemma 10 holds regardless of whether cT (sI −
A)−1E is right-invertible or not. As such, the nec-
essary and sufficient conditions for bimodal systems320

[15] can be recovered from Corollary 11.

5.3. Linear Complementarity Systems

5.3.1. Case 1

In Theorem 14.3 in [16] it is shown that linear
complementarity system (14), with H being a P -
matrix and the transfer matrix R+N(sI −A)−1E
right invertible, is disturbance decoupled if and only
if ∑

α∈I
〈Aα | imEα〉 ⊆ ker J. (22)

This result can be recovered from Corollary 11.
To see this, note that the cones Yi are solid for this325

linear complementarity system, which can be seen
from the right-invertibility of R + N(sI − A)−1E
and H being a P -matrix. Thus, Assumption 7 is
satisfied, and since Assumptions 1 and 2 also hold
(see Example 5), we can indeed apply Corollary 11330

and find (22) as a necessary and sufficient condition
for system (14) to be disturbance decoupled.

By exploiting the special relation between the
matrices Aα and Eα, it is shown in Lemma 14.2
in [16] that∑

α∈I
〈Aα | imEα〉 = 〈A | im

[
E G

]
〉.

Therefore, we find that

〈A | im
[
E G

]
〉 ⊆ ker J.

is a necessary and sufficient geometric condition for
system (14) to be disturbance decoupled.

5.3.2. Case 2335

We consider again the Linear Complementarity
System (14), and now we assume that R = 0,
H = 0, NG is a symmetric positive definite ma-
trix and that the transfer matrix N(sI −A)−1E is
right invertible as a rational matrix.340

It turns out that checking that system (14) sat-
isfies Assumption 7 requires more effort than case
1, as the cones Yi in this case are not all solid.

Lemma 12 Suppose that R = 0, H = 0, NG
is a symmetric positive definite matrix and that345

N(sI−A)−1E is right invertible. Then system (14)
satisfies Assumption 7.

Proof. We start with the observation that from
the right-invertibility of the transfer matrix N(sI−
A)−1E it follows that the transfer matrix

Tα(s) :=

[
0

Nα•E

]
+

[
Nαc•
Nα•A

]
(sI −A)−1E

is also right invertible for any α ⊆ {1, 2, . . . , nη}.
Indeed, suppose that there is a rational vector
col(uαc(s), uα(s)) such that[

uTαc(s) uTα(s)
]
Tα(s) = 0.

Then, from the relation

s ·Nα•(sI −A)−1E = Nα•E +Nα•A(sI −A)−1E,

we see that[
uTαc(s)

1
s · u

T
α(s)

]
Tα(s)

=
[
uTαc(s) uTα(s)

] [Nαc•
Nα•

]
(sI −A)−1E = 0.

The right-invertibility ofN(sI−A)−1E implies that[
uTαc(s) uTα(s)

]
= 0. Consequently, Tα(s) is right

invertible.350

Next, we use (5) and (4) to observe that

T ∗(A,E,
[
Nαc•
Nα•A

]
,

[
0

Nα•E

]
)

= T ∗(Aα, Eα,
[
Nαc•
Nα•A

]
,

[
0

Nα•E

]
)

⊆ 〈Aα | imEα〉.

Since Tα(s) is right invertible we can use this to-
gether with (6) to find that

im

[
0

Nα•E

]
+

[
Nαc•
Nα•A

]
〈Aα | imEα〉 = Rnη

or, equivalently,[
Nαc• 0
Nα•A Nα•E

] (
〈Aα | imEα〉 × Rnd

)
= Rnη .

(23)
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We rewrite Yα as

Yα =

[
N 0
NA NE

]
Ỹα

with

Ỹα = {
[
x
d

]
| Θα

[
x
d

]
> 0} ∩ ker

[
Nα• 0

]
,

where

Θα =

[
I 0
0 −(Nα•G•α)−1

] [
Nαc• 0
Nα•A Nα•E

]
. (24)

From (23) we see that

Θα

(
〈Aα | imEα〉 × Rnd

)
= Rnη (25)

since the first matrix on the right-hand-side of (24)
is non-singular. Hence Θα has full row rank, which
gives us that

rint{
[
x
d

]
| Θα

[
x
d

]
> 0} = {

[
x
d

]
| Θα

[
x
d

]
> 0}.

Furthermore, (23) also shows that

{
[
x
d

]
| Θα

[
x
d

]
> 0} ∩ ker

[
Nα• 0

]
6= ∅. (26)

Therefore, we can use Proposition 2.42 in [27] to
find that the relative interior of Ỹα is given by

rint Ỹα = {
[
x
d

]
| Θα

[
x
d

]
> 0} ∩ ker

[
Nα• 0

]
.

Note that

Nα•Aα = 0, Nα•Eα = 0, (27)

and hence 〈Aα | imEα〉 ⊆ kerNα•. Consequently,
we have that

(〈Aα | imEα〉 × Rnd) ∩ rint Ỹα

= (〈Aα | imEα〉 × Rnd) ∩ {
[
x
d

]
| Θα

[
x
d

]
> 0},

which is non-empty, due to (25). Hence, the set[
N 0
NA NE

](
(〈Aα | imEα〉 × Rnd) ∩ rint Ỹα

)
is also non-empty. Using Proposition 2.44(a) in [27],
this implies that([

N
NA

]
〈Aα | imEα〉+ im

[
0
NE

])
∩ rint(Yα) 6= ∅,

which is Assumption 7(ii).
From (26) we know that there is a point ȳ such

that Θαȳ > 0 and
[
Nα• 0

]
ȳ = 0. This implies

that for every y ∈
[
Nα• 0

]
there is a γ ∈ R

such that y + γȳ ∈ Ỹα, so y ∈ ˜span(Yα). Hence,
ker
[
Nα• 0

]
⊆ span(Ỹα). Together with Ỹα ⊆

ker
[
Nα• 0

]
this gives us

span(Ỹα) = ker
[
Nα• 0

]
.

With (27) this gives us

〈Aα | imEα〉 × Rnd ⊆ span(Ỹα).

Hence,([
N
NA

]
〈Aα | imEα〉+ im

[
0
NE

])
⊆ span(Yα),

and hence system (14) also satisfies Assumption
7(i). �

Lemma 10 can not directly be applied to system
(14), since the right-invertibility of N(sI − A)−1E
does not imply that[

0
NE

]
+

[
N
NA

]
(sI −A)−1E

is right invertible. However, the relation

N(sI −A)−1E =
1

s

(
NE +NA(sI −A)−1E

)
reveals that the right-invertibility of N(sI−A)−1E
implies thatNE+NA(sI−A)−1E is right invertible
as well. So if we take C̃ = NA and F̃ = NE and
write

Aα = A+MαC̃, Eα = E +MαF̃

where
Mα = −G•α(Nα•G•α)−1Iα•,

then condition (iv) of Lemma 10 holds with C and
F replaced by C̃ and F̃ respectively. Consequently,355 ∑
α∈I〈Aα | imEα〉 is Aα-invariant for all α, and

contains A. Therefore, we can apply Corollary 11
to system (14). Before we do so, we first find a more
compact form of

∑
α∈I〈Aα | imEα〉.

Lemma 13 Suppose that R = 0, H = 0, NG is a
symmetric positive definite matrix and that N(sI−
A)−1E is right invertible. Then we have∑

α∈I
〈Aα | imEα〉 = 〈A | im

[
E G

]
〉.
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Proof. From the discussion above and taking α =
∅ in Lemma 10, we see that∑

α∈I
〈Aα | imEα〉 = 〈A | A+ E〉, (28)

with A and E as in (18). Note that imEα ⊆360

im
[
E G

]
for each α ∈ I, so E ⊆ im

[
E G

]
. Fur-

thermore, for every α, β ∈ I we have im(Aβ−Aα) ⊆
imG, and henceA ⊆ imG. So we can conclude that
A+ E ⊆ im

[
E G

]
.

To prove that the other inclusion also holds,
choose α = {1, 2, . . . , nη} and β = ∅, then we see
that[
Aβ −Aα Eβ − Eα

]
= G(NG)−1

[
NA NE

]
.

The right-invertibility of NE+NA(sI−A)−1E im-
plies that

[
NA NE

]
is of full row rank, and since

NG is symmetric positive definite, this implies that

im
[
Aβ −Aα Eβ − Eα

]
= imG,

and hence imG ⊆ A+ E . By taking α = ∅ we find365

that imE ⊆ E , and hence im
[
E G

]
⊆ A+ E .

Together, this gives us

A+ E = im
[
E G

]
,

which, combined with (28), proves the statement. �

Now, combining Corollary 11 with Lemma 12 and
Lemma 13, we have the following result for the lin-
ear complementarity system (14).370

Theorem 14 Suppose that R = 0, H = 0, NG
is a symmetric positive definite matrix and that
N(sI −A)−1E is right invertible as a rational ma-
trix. Then the linear complementarity system (14)
is disturbance decoupled if and only if

〈A | im
[
E G

]
〉 ⊆ ker J.

Here we see that, although system (14) is highly
non-linear and non-smooth, the conditions for sys-
tem (14) to be disturbance decoupled are geometric
in nature and very akin to those for linear systems,
for which 〈A | imE〉 ⊆ ker J is the condition. For375

the linear complementarity system we see that the
effect of the complementarity variables on the state,
captured by 〈A | imG〉, also has to be taken into
account.

6. Conclusion and discussion380

In this paper, we presented necessary and suffi-
cient conditions, geometric in nature, under which
a general linear multi-modal system is disturbance
decoupled. The main results, presented in Theo-
rem 8, Theorem 9, and Corollary 11 generalizes all385

existing results in the literature on switched linear
systems [39], bimodal systems [15], conewise linear
systems [14], linear complementarity systems with
P -property [16]. In addition, these results lead to
necessary and sufficient conditions for a class of390

linear complementarity systems (see Theorem 14)
whose disturbance decoupling properties were not
been studied before.

For the presented general linear multi-modal sys-
tem the necessary condition in Theorem 8 and the395

sufficient condition in Theorem 9 for being distur-
bance decoupled do not coincide. In Corollary 11
we presented several conditions under which these
conditions do coincide.

In this paper we only studied under what condi-400

tions a general linear multi-modal system is distur-
bance decoupled; rendering a system disturbance
decoupled by means of feedback is the next step.
Finding a static state feedback such that the re-
sulting closed-loop system satisfies (15) becomes a405

linear algebraic problem and can be solved mimick-
ing the footsteps for the linear case.

Possible future research lines include extending
the results presented in this paper to piecewise
affine systems and to study the extension to Fil-410

ippov solutions. Furthermore, the results for the
linear complementarity systems might be extended
to the more general case with a not necessarily
symmetric but positive semi-definite H for which
there exists a positive symmetric matrix K such415

that KGu = NTu for all u ∈ ker(H +HT ).
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